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The purpose of this paper is to present a simple approach for eliminating the &&dependent''
torsional angles existing in the reduction gears of a gear-branched system so that this system
may be modelled as an equivalent straight-geared (or direct-transmitted) system. Then the
overall mass matrix, damping matrix, sti!ness matrix, and load vector of the
direct-transmitted system are obtained with the conventional "nite element method (FEM)
by assembling the elemental property matrices of all the shaft elements contained in the
torsional system. Based on the overall property matrices determined, the equations of
motion of the whole vibrating system are de"ned. Solution of the equations of motion gives
the dynamic responses and solution of the associated eigenvalue equation provides the
natural frequencies and the mode shapes of the system. A simple technique is also presented
to study the in#uence of the shaft mass on the natural frequencies of a torsional system.

( 2001 Academic Press
1. INTRODUCTION

In the early years, the torsional vibration analysis of a &&straight-geared'' (or
direct-transmitted) system was performed using the Holzer method [1], irrespective of
whether the system was undamped [2, 3] or damped [4}6]. After the advent of computers,
the more e!ective transfer matrix method was developed to solve the problem [7}9]. The
torsional vibration of a &&gear-branched'' system (having reduction gears) has been solved
with the system matrix eigenvalue extraction method or the trial- and-error search method
based on the matrix transfer/Holzer procedures [10}13].

In recent years, the "nite element method (FEM) has been used to do the torsional
vibration analysis of a straight-geared system [14] and a gear-branched system [15, 16]. In
general, the FEM formulation for a gear-branched system is much di$cult than that of
a straight-geared system. The di$culty arises from the fact that the total &&independent''
degrees of freedom (d.o.f.) of a gear-branched system (with rigid gears and rigid teeth) is less
than the total number of rotating gears (or disks) because of the existence of the reduction
gears between the adjacent branches. In reference [16], two rotating disks coupled by an
elastic shaft segment are considered as a "nite element. Based on this de"nition, the element
sti!ness matrix [k

e
]
i
and element mass matrix [m

e
]
i
are derived. Then the overall sti!ness

matrix [k] and the overall mass matrix [m] are obtained by assembling all the element
matrices [k

e
]
i

and [m
e
]
i

respectively. In order to eliminate the &&dependent'' d.o.f., the
transformations [kM ]"[¹]T[k][¹] and [mN ]"[¹]T[m][¹] are made. The matrix [¹] is
0022-460X/01/060159#24 $35.00/0 ( 2001 Academic Press
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a m]n rectangular transformation matrix with coe$cients being equal to 0, 1 or R
j
, where

R
j
( j"1, 2,2) is the transmission ratio of the jth reduction gear. Since the total number of

rows of [¹], m, is equal to the &&independent'' total d.o.f. together with the &&dependent'' ones,
and the total number of columns of [¹], n, is equal to the &&independent'' total d.o.f., it is
evident that although [k] and [m] are the m]m square matrices, [kM ] and [mN ] are the n]n
ones. From the foregoing description, one sees that the formulation of reference [16] cannot
reveal the advantage of the FEM. For this reason, a simple approach is presented in this
paper to eliminate the dependent torsional angles existing in the reduction gears, so that
a gear-branched system may be modelled as an equivalent straight-geared (or
direct-transmitted) system. Hence, the overall property matrices of the entire torsional
system may be obtained with the conventional assembling technique of the FEM and no
overall transformation or element-by-element transformations as adopted by references
[15, 16] are required.

By using the presented approach, an equation of motion with the standard form will be
easily obtained. After that, the simple Jacobi method [17] may be used to solve the undamped
natural frequencies and the popular Newmark direct integration method [17] may be used to
solve the forced vibration responses due to external excitations. It is worth mentioning that
the presented approach is applicable to both undamped and damped systems.

2. DERIVATION OF PROPERTY MATRICES OF A SHAFT ELEMENT

Figure 1(a) shows one part of a gear-branched system, where shaft p and shaft q are
connected by two gears with radii of pitch circles r

j
and r@

j
respectively. The equations of

motion for the two-shaft elements are given by [15}17]
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Figure 1. (a) Shafts p and q connected with reduction gears, (b) equivalent straight-geared system with no speed
reduction.
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where I
p
"o (nd4

p
/32)l

p
and k

p
"G(nd4

p
/32)l

p
are the polar mass moment of inertia and

torsional spring constant of shaft p respectively. Furthermore, hG , h0 , and h are the angular
acceleration, velocity, and displacement, c is the damping coe$cient, F is the external load,
d and l are the diameter and length of shaft, while G and o are the shear modulus and mass
density of the shaft material, respectively. The notations with subscripts i, j, j@ and k,
respectively, represent the associated parameters of gears i, j, j@ and k. Similarly, those with
subscripts p and q denote the associated parameters of shafts p and q respectively.

Compatibility of the angular displacements between the reduction gears j and j@ requires
that

r
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h
j
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(3a)

or

h@
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j
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h
j
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j
h
j
, (3b)

where the negative sign denotes the direction of h@
j
being opposite to that of h

j
, while

R
j
"r

j
/r@

j
. (4)

Since r
j
and r@

j
are the radii of pitch circles of gears j and j@, R

j
"r

j
/r@

j
represents the speed

ratio of the driven shaft q to driving shaft p, or the gear ratio of master gear j to slave gear j@.
For convenience of derivation, the following equality equation is introduced:

h
k
"h

k
. (5)

Writing equations (3b) and (5) in the matrix form gives

Mh@N"[j]MhN, (6)

where

Mh@N"Mh@
j

h
k
N, MhN"Mh

j
h
k
N, [j]"C

!R
j

0

0

1D. (7a)}(7c)

From equation (6) one has

Mh0 @N"[j]Mh0 N, MhG @N[j]MhG N (8a), (8b)

where

Mh0 @N"Mh0 @
j

h0
k
N, Mh0 N"Mh0

j
h0
k
N (9a), (9b)

MhG @N"MhG @
j

hG
k
N, MhG N"MhG

j
hG
k
N. (10a), (10b)

In the above equations, M ) N represents a column vector and [j] is the transformation matrix
for eliminating the &&dependent'' angular displacement h@

j
. Substituting equations (6), (8a)

and (8b) into equation (2) and then premultiplying both sides of the resulting equation by
[j]T, one obtains

[m
e
]MhG N#[c

e
]Mh0 N#[k

e
]MhN"M f

e
N, (11)
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It is noted that the &&dependent'' angular displacement h@
j
is eliminated in equation (11). Also,

the elemental mass matrix [m
e
], damping matrix [c

e
], sti!ness matrix [k

e
], and the load

vector M f
e
N of the &&driven'' shaft q, as de"ned by equations (12a)}(12d), will take the same

forms as those of the &&driving'' shaft p (see equation (1)) if one sets R
j
"!1. In other words,

equations (12a)}(12d) are the key expressions of the presented approach, since one may use
them to de"ne the elemental property matrices of all the shaft elements composed of
a gear-branched system. The only di!erence between the elemental property matrices for
a &&driving'' shaft (with master gear) and those for a &&driven'' shaft (with slave gear) is that
R

j
"!1 for the former and R

j
"r

m
/r

s
for the latter, where r

m
and r

s
represent the radii of

the pitch circles for the master gear and the slave gear respectively.
According to the conventional FEM, by assembling the associated elemental property

matrices of the shaft elements p and q connected with the reduction gears as shown in
Figure 1(a), one obtains the following equations of motion for the equivalent
straight-geared system with no speed reduction as shown in Figure 1(b):
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From the above derivations one sees that any two shaft elements connected by
a reduction-gear set as shown in Figure 1(a) may be replaced by an equivalent
straight-geared (or direct-transmitted) system without the reduction gear as shown in
Figure 1(b) so that the conventional assembling technique for the FEM is possible.

3. DETERMINATION OF AN EQUIVALENT DIRECT-TRANSMITTED SYSTEM
FROM A GEAR-BRANCHED SYSTEM

Figure 2(a) shows the block diagram of a gear-branched system [2]. The labels (1)}(6)
represent the numbering of the six shaft elements and 1}10 represent the 10 gears (or disks).
Furthermore, R

2
and R

5
represent the speed ratios of shaft (2) and shaft (5) to shaft (1),

respectively, and R
6

is the speed ratio of shaft (6) to shaft (5). It is noted that the digits with
parentheses ( ) denote the numbering of the shafts and those without parentheses denote
the numbering of the gears. Since the angular displacements of disks 3, 7, and 9 are
dependent on those of disks 2 and 8, the numberings of disks 3, 7, and 9 as shown in



Figure 2. (a) The original gear-branched system [2]; (b) notations for the gear-branched system; and (c) the
equivalent direct-transmitted gear system.
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Figure 2(a) are eliminated in Figure 2(b), where the angular displacements of the three
unnumbered disks are represented by !R

2
h1
2
, !R

5
h1
2

and !R
6
h1
6

respectively. In
addition, the mass moments of inertia of the forgoing three disks are denoted by I@

2
, IA

2
, and

I@
6
, respectively, where the subscripts 2 and 6 are the identi"cation numbers for the master

gears with which the slave gears of the driven shafts (2), (5), and (6) are connected.
Figure 2(c) represents the equivalent direct-transmitted system of the original
gear-branched system shown in Figure 2(a). Based on the theory presented in the last
section, the property matrices for each shaft element in the direct-transmitted gear system
are listed below. For simplicity, the system is assumed to be undamped (i.e., c

j
:0) with

negligible shaft mass (o:0) and no excitations (F
k
"0, k"1}7):
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To determine the overall property matrices of a structural system by using the FEM, one
must input the coe$cients of the elemental mass matrices [m

e
]
i
and the elemental sti!ness

matrices [k
e
]
i
, i"1, 2,2, together with the identi"cation numbers for the d.o.f. relating to

these coe$cients. The latter are denoted by the subscripts ( j) of h1
j
( j"1}7) as shown on the

upper side and right side of [m
e
]
i

and [k
e
]
i
, i"1}6, given by equation (14). From

Figure 2(c), one sees that disk 3 is connected with shafts (2) and (3), while disk 4 is connected
with shafts (3) and (4). Hence, if the mass moments of inertia for disks 3 and 4, I

3
and I

4
, are

incorporated with shafts (2) and (3), respectively, they should not be considered by shafts (3)
and (4), respectively, again to avoid the repetition. This is the reason why the coe$cients of
"rst row and "rst column in the elemental mass matrices [m

e
]
3

and [m
e
]
4

are all equal to
zero, as one may see from equation (14).

Assembling the mass matrices [m
e
]
i
and sti!ness matrices [k

e
]
i
, i"1, 2,2, for all the

shaft elements as shown in equation (14) will determine the overall mass matrix [mN ] and
overall sti!ness matrix [kM ] and de"ne the equation of motion of the entire vibration system:

[mN ]Mh1G N#[kM ]Mh1 N"0. (15)

For free vibration, one has

Mh1 (t)N"Mh1 *Ne*ut, (16)

where Mh1 *N is the amplitude of Mh1 (t)N, u is the natural frequency of the system, t is time, and

i"J!1.
Substitution of equation (16) into equation (15) leads to

([kM ]!u2[mN ])Mh1 *N"0 (17)

which is an eigenvalue equation, the solution u
r
represents the rth natural frequency and

Mh1 *N
r
the corresponding mode shape of the vibration system. Here the eigenvalue equation

(17) is solved with the modi"ed Jacobi method [17].
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4. EIGENVALUES AND EIGENVECTORS OF THE DAMPED SYSTEM

The equation of motion for the free vibration of a damped system is given by

[mN ]Mh1G N#[cN ]Mh10 N#[kM ]Mh1 N"0. (18)

If the following equality equation is introduced

[mN ]Mh10 N!MmN NMh10 N"0, (19)

then the combination of equations (18) and (19) gives

[mJ ]MHQ N#[kI ]MHN"0, (20)

where
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Subscript n in equations (21)}(23) represents the order of the matrix [mN ], [cN ] or [kM ]. For free
vibration, MH (t)N takes the form

MH(t)N"MH*Neat, (24)

where MH*N is the amplitude of MH (t)N and is a 2n]1 column vector. The substitution of the
last equation into equation (20) yields

([kI ]#a
i
[mJ ])MH*N(i)"0 (25)

which is an eigenequation with eigenvalues to take the following complex form:

a
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and the corresponding eigenvectors are
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I
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where u6
Ir

denote the 2rth and (2r!1)th natural frequencies, while M/N(r)
l

and Ma/N(r)
I

denote
the corresponding mode shapes of angular displacements and angular velocities [7].

5. FORCED VIBRATION RESPONSES

Based on the overall mass matrix [mN ], damping matrix [cN ] and sti!ness matrix [kM ], one
obtains the equation of motion for the forced vibration system

[mN ]Mh1G N#[cN ]Mh10 N#[kM ]Mh1 N"MFM (t)N, (28)
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where MFM (t)N is the external load vector. Here, the Newmark direct integration method [17]
is used to solve the dynamic responses.

6. THE EQUIVALENT DISK OF I AND THE EQUIVALENT SHAFT OF k

For the dynamic analysis of a torsional system, the key parameter of the disk is the polar
mass moment of inertia, I, and that of the shaft is the torsional spring constant, k. Hence,
most of the existing literature provides the values of I and k instead of the actual dimensions
of each disk and each shaft. In order to study the in#uence on the dynamic behavior of the
ratio between the polar mass moment of inertia of each shaft and that of the associated gear,
each value of I is replaced by an &&equivalent disk (or gear)'' with diameter D and thickness
¹, while each value of k is also replaced by an &&equivalent shaft''with diameter d and length l.

If the mass density of the disk (and the shaft) is o, then the polar mass moment of inertia of
the jth disk is given by [2, 3]

I
j
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nD4
j

32 B¹j
. (29)

From the last equation one obtains

D
j
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onBA
I
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¹
j
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Similarly, the torsional spring constant of the ith shaft is [2, 3]

k
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i
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Hence,

d
i
"4S

32

Gn
k
i
l
i
. (32)

Where G is the shear modulus of the shaft material.
From equation (30) one sees that corresponding to one value of polar mass moment of

inertia, I
j
, a number of disks with di!erent values of diameter D

j
and thickness ¹

j
may be

obtained. Similarly, with respect to one value of torsional spring constant, k
i
, one may have

many shafts with di!erent values of diameter d
i
and length l

i
as may be seen from equation

(32). It is noted that the torsional spring constant of a shaft element is a key parameter that
must always be considered for the torsional vibration analysis. However, the mass of the
shaft element is often neglected in the most of the existing literature.

6.1. INFLUENCE OF SHAFT MASS ON THE NATURAL FREQUENCIES

For the shaft element (p) as shown in Figure 1(a) with damping e!ect neglected, the
equation of free vibration is given by (cf. equation (1))
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For harmonic free vibration, one has
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i
(t) and h

j
(t), u is the natural frequency

of the shaft element, t is time, and i"J!1.
Substituting equation (34) into equation (33) gives
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Non-trivial solution of the last equation requires that
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From the last equation one obtains
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where u"0 represents the natural frequency of the rigid-body motion, while u
C

denotes
the natural frequency of &&considering'' the shaft mass. For the case of &&neglecting'' the shaft
mass, i.e., I

p
"0, equation (38) reduces to
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(39)

which is the natural frequency of a torsional system composed of two rigid disks (with mass
moments of inertia, I

i
and I

j
) connected by a &&massless' shaft (with spring constant k

p
) as one

may see from the textbook [3].
From equations (38) and (39) one obtains the ratio of u

N
(by &&neglecting'' the shaft mass)

to u
C

(by &&considering'' the shaft mass) to be
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Although both the natural frequencies u
N

and u
C

are functions of torsional spring
constant k

p
(see equations (38) and (39)), however, the ratio between them, Ru ("u

N
/u

C
),

has nothing to do with k
p

as one may see from equation (40).
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For convenience, the two dimensionless parameters IM
i
and IM

j
de"ned by equation (41) are

replaced by
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where R
p@i

and R
j@i

represent the ratios of the mass moments of inertia of shaft p and the
larger gear (or disk) j to the one of the smaller gear (or disk) i respectively. Use of equations
(42) and (43) reduces equation (40) to

Ru"
u

N
u

C

"SA
1#R

j@i
1#R

j@i
#R

p@i
BA

R
j@i
#1

3
(1#R

j@i
)R

p@i
# 1

12
R2

p@i
R

j@i
B. (44)

Hence, for a two-d.o.f. (2-d.o.f.) shaft system with all its dimensions keeping unchanged
except the shaft diameter, one may determine the in#uence of the shaft mass on the natural
frequency from the last equation.

7. NUMERICAL RESULTS AND DISCUSSIONS

A three-branched gear system as shown in Figure 2(a) [2] and a six-branched one as
shown in Figure 3 [13] are studied in this paper. The material constants for the gears and
the shaft segments are: mass density o"0)73]10~3 lbs2/in4, shear modulus of elasticity
G"1)15]107 psi. The other given data are listed in Tables 1 and 5 respectively.

7.1. FREE VIBRATION ANALYSIS OF AN UNDAMPED THREE-BRANCHED SYSTEM

For the three-branched gear system shown in Figure 2(a), the principal dimensions and
the physical properties of the gears and the shafts are listed in Table 1. Actually, the only
data given by Wilson [2] are the mass moments of inertia for the gears, I

j
( j"1}10), and

the spring constants, k
i
(i"1}6), as shown in the second and sixth Columns of Table 1. The

other data (such as gear thickness ¹
j
, gear diameter D

j
, shaft diameter d

i
and shaft length l

i
as shown in third, fourth, seventh and eighth columns of Table 1) are calculated by using
equations (30) and (32) for studying the in#uence of the shaft mass on the natural
frequencies of the system.

Based on the present approach, the gear-branched system shown in Figure 2(a) is reduced
to the equivalent direct-transmitted gear system shown in Figure 2(c). It is seen that the
three slave gears (Nos. 3, 7 and 9 of Figure 2(a)) are eliminated in the equivalent system
(Figure 2(c)). The natural frequency of rigid-body motion, u

0
, and those of the lowest "ve

elastic torsional vibrations, u
r
(r"1}5), are listed in Table 2. For the case of &&neglecting''

the shaft mass, it is seen that the natural frequencies u
r,N

(r"1}5) obtained from the
present approach are in good agreement with those obtained from the FEM of reference
[16] or from the Holzer method of reference [2]. For the case of &&considering'' the shaft
mass, the natural frequencies u

r,C
(r"1}5) obtained from the present approach are shown

in the third row of Table 2. The digits placed in the parentheses ( ) represent the ratios of
u

r,N
to u

r,C
. Since all the values of Rur

"u
r,N

/u
r,C

(r"1}5) are greater than 1)0, the shaft
mass has the e!ect of reducing the natural frequencies of the torsional system. However,
since Rur

"u
r,N

/u
r,C

+1.0, the in#uence of shaft mass on the dynamic behavior of the
present torsional system is negligible.



Figure 3. (a) The mathematical model of a six-branched gear system; and (b) the equivalent direct-transmitted
gear system (i.e., the FEM model).
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The rigid-body mode shape Mh1 *N
0
and the lowest four elastic mode shapes Mh1 *N

r
(r"1}4)

are shown in Table 3 and Figure 4. From Figure 4(c) one sees that the second mode
displacements at disks, 1, 4 and 5 are predominant. This may be the main reason that the
dampers equipped on these three disks as shown in Figure 5 a!ects the second natural
frequency u

2
signi"cantly as may be seen from Table 4.

7.2. FREE VIBRATION ANALYSIS OF AN UNDAMPED SIX-BRANCHED SYSTEM

The next example illustrated here is the six-branched gear system as shown in Figure 3(a)
with the dimensions and physical properties listed in Table 5. The corresponding equivalent
direct-transmitted gear system is shown in Figure 3(b). It is similar to Table 1 in that the
given data are the mass moments of inertia of the gears, I

j
( j"1}24), and the spring

constants of the shaft segments, k
i
(i"1}21), as shown in the second and sixth columns of



TABLE 1

¹he dimensions and physical properties for the three-branched gear system
as shown in Figure 2(a)

Gears Shafts

Mass moments Spring
No.s of inertia, Thickness Diameterst No. constants, k

i
Diameters Lengths

j I
j
(lb in s2) ¹

j
(in) D

j
(in) i 106 (lb in/rad) d

i
(in) l

i
(in)

1 9720)0 7 66)345 1 5)46 5 129)236
2 986)4 2 51)218 2 1)74 4 166)107
3 36)0 2)108 22)094 3 35)28 4 8)192
4 402)0 2 40)923 4 68)70 4 4)207
5 234)0 2 35)745 5 1)94 4 148)983
6 234)0 2 35)745 6 2)15 2)5 20)513
7 3)6 3)934 10)6301
8 300)0 0)78856 48)000
9 0)36 4)9178 5)6533

10 81)6 2 27)468

sThe disk numbering is based on the original gear-branched system (including the slave gears) as shown in
Figure 2(a).

tGear ratios: R
2
"D

2
/D

3
"2)3182, R

5
"D

2
/D

7
"4)8182, R

6
"D

8
/D

9
"8)4906.

TABLE 2

Several lowest natural frequencies of the three-branched gear system as shown in Figure 2(a),
u

r
(r"0}5)

Natural frequencies u
r
(rad/s)

Methods u
0

u
1

u
2

u
3

u
4

u
5

Shaft mass

Present 0)000 23)0870 41)2902 215)2224 376)6524 710)4786 Considereds

0.000 23)0899 41)3228 217)6013 376)9155 712)6985 Neglectedt

(1)000)A (1)001) (1)011) (1)001) (1)003)

FEM [16] 0)000 23)0899 41)3228 217)6013 376)9155 712)6985 Neglectedt

(1)000)A (1)001) (1)011) (1)001) (1)003)

Holzer [2] 0)000 23)0929 41)3290 217)9722 376)9155 713)3585 Neglectedt

(1)000)A (1)001) (1)013) (1)001) (1)004)

sMass of each shaft segment is &&considered''.
tMass of each shaft segment is &&neglected''.
ARatios evaluated from the formula: Rur

"u
r,N

/u
r,C

, r"1}5, where subscripts C and N denote that the mass of
each shaft segment is &&considered'' and &&neglected'' respectively.
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Table 5. The other dimensions of the gears and shafts are calculated by using equations (30)
and (32).

For the equivalent gear system shown in Figure 3(b), the reduction gear of branch
1 (designated by 6(1)) meshes with the others of branches 2}6, 6( j ) ( j"2}6), with gear ratios
R

j
"D(1)

6
/D( j)

6
"5)0 ( j"2}6). If the reduction gear 6(1) is considered as the master gear,

then the others 6( j) ( j"2}6) are the slave gears and should be eliminated from the



TABLE 3

Several lowest mode shapes for the three-branched gear system as shown in Figure 2(a), MhM *N
r

(r"0}4)

Disk
nos. j Mh1 *N

0
Mh1 *N

1
Mh1 *N

2
Mh1 *N

3
Mh1 *N

4

1 0)10000E#01 0)10000E#01 0)10000E#01 0)10000E#01 0)10000E#01
2 0)10000E#01 0)50885E!01 !0)20399E#01 !0)83294E#02 !0)25191E#03
3 !0)23182E#01 !0)11796E#00 0)47288E#01 0)19309E#03 0)58397E#03
4 !0)23182E#01 !0)16109E#00 0)35250E#02 !0)35264E#01 !0)75079E#04
5 !0)23182E#01 !0)16224E#00 0)36069E#02 !0)11321E#02 0)42466E#04
6 !0)23182E#01 !0)16254E#00 0)36280E#02 !0)13498E#02 0)82280E#04
7 !0)48182E#01 !0)24518E#00 0)98284E#01 0)40133E#03 0)12137E#04
8 !0)48182E#01 0)33151E#00 !0)20376E#01 0)23176E#01 0)16137E#02
9 0)40909E#02 !0)28147E#01 0)17301E#02 !0)19677E#02 !0)13701E#03

10 0)40909E#02 !0)28728E#01 0)18499E#02 0)24686E#02 0)31196E#02

sThe numbering is based on the original gear-branched system (including the slave gears) as shown in Figure
2(a).
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equivalent system based on the present approach. For this reason, the total number of
&&independent'' gears shown in Figure 3(b) is 52 ("57}5).

The natural frequency of rigid-body motion, u
0
, and those of the lowest "ve elastic

torsional vibrations, u
r

(r"1}5), are listed in Table 6, while the associated mode
shapes, Mh1 *N

r
(r"0}4), are shown in Figure 6. For the case of &&neglecting'' the shaft

mass, the lowest "ve elastic natural frequencies u
r,N

(r"1}5) obtained from the present
approach (see the fourth row of Table 6) are in good agreement with those obtained
from the FEM of reference [16] (see the sixth row of Table 6). However, the CPU time
required by the former (9 s) is much less than that required by the latter (35 s) as one may see
from the "nal column of Table 6. The computer used here is the Pentium 133 with 16 MB
RAM. In other words, the calculating speed used in the present approach is about four
times higher than that used in the method of reference [16]. This is because neither
element-by-element transformations nor overall transformation is required for the present
approach.

For the case of &&considering'' the shaft mass, the lowest "ve natural frequencies u
r,C

(r"1}5) obtained from the present approach are shown in the third row of Table 6. From
the ratios Rur

"u
r,N

/u
r,C

(r"1}5) shown in the parentheses ( ) ) of Table 6 for the
six-branched gear system, one sees that the present values of Rur

(r"1}5) are much larger
than the corresponding values shown in Table 2 for the three-branched system. This result
agrees with that shown in Tables 7 and 8.

Comparing Figure 6 with Figure 3(a), one sees that disk Nos. 1}6 belong to the propeller
branch (i.e., branch No. 1), while disk Nos. 7}9 and 55}57 (see Figure 6), respectively,
belong to the generator branches (i.e., branch Nos. 2 and 6) as shown in Figure 3(b). The
disk numbers of the other three engine branches (see Figure 3(b)) are 10}24 (for branch No.
3), 25}39 (for branch No. 4), 40}54 (for branch No. 5), respectively, as shown in Figure 6.
Figure 6(a) shows the rigid-body mode (or 0th mode). It is evident that the directions of the
angular displacements of disk Nos. 7, 10, 25, 40 and 55 (that is, the directions of h1 *

j
, j"7, 10,

25, 40, 55) are the same and are opposite to the direction of the angular displacement of disk
No. 6 (that is the direction of h1 *

6
). Also, the amplitudes of the former are the same and are

much larger than the amplitude of the latter. This is because disk Nos. 7, 10, 25, 40 and 55



Figure 4. Several lowest &&undamped''mode shapes for the three-branched gear system as shown in Figure 2: (a)
0th mode; (b) 1st mode; (c) 2nd mode; (d) 3rd mode; (e) 4th mode.
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are meshed with disk No. 6 and the diameters of the former are the same (D
j
"16)1405A)

and are much smaller than the diameter of disk No. 6 (D
6
"80)7026A) as one may see from

Table 5. The foregoing phenomena exist in mode shapes 1}4 shown in Figure 6(b)}6(e),
since they are the compatibility conditions that each mode shape must satisfy.



Figure 5. (a) The mathematical model of a damped three-branched gear system; and (b) the equivalent
direct-transmitted gear system (or the FEM model).

TABLE 4

In-uence of damping on the natural frequencies of the three-branched gear system as shown in
Figure 5(a) with the shaft mass considered

Damping coe!. Eigenvalues a
r
"u6

Rr
$iu6

Ir
C

j
( j"1}3)

(lb in s/rad) a
1

a
2

a
3

a
4

a
5

Remarks

!0)3998 !8)7961 !0)0619 !6)9392 !0)0412 u
Rr

8000 23)0966 40)5066 215)1637 376)5910 710)4205 u
Ir

(1)0004)s (0)9810) (0)9997) (0)9998) (0)9999) (rad/s)

!0)5976 !13)2015 !0)0978 !10)3994 !0)00596 u
Rr

12 000 23)0985 39)1429 215)2030 376)5661 710)4504 u
Ir

(1)0005) (0)9480) (0)9999) (0)9998) (0)9999) (rad/s)

!0)7951 !17)6025 !0)1284 !13)8619 !0)02012 u
Rr

16 000 23)0915 37)1352 215)2301 376)4578 710)3591 u
Ir

(1)0002) (0)8994) (1)0000) (0)9995) (0)9998) (rad/s)

!0)9913 !22)0224 !0)1564 !17)3323 !0)0455 u
Rr

20 000 23)0878 34)3940 215)2120 376)3601 710)4620 u
Ir

(1)0000) (0)8330) (0)9999) (0)9992) (0)9999) (rad/s)

!1)1874 !26)4465 !0)1860 !20)7890 !0)0299 u
Rr

24 000 23)0811 30)6837 215)1843 376)2430 710)4676 u
Ir

(0)9997) (0)7431) (0)9998) (0)9989) (0)9999) (rad/s)

!1)3816 !30)8628 !0)2144 !24)2511 !0)0163 u
Rr

28 000 23)0706 25)5747 215)1736 376)1337 710)3758 u
Ir

(0)9993) (0)6194) (0)9998) (0)9986) (0)9998) (rad/s)

Undamped 23)0870 41)2902 215)2224 376)6524 710)4786 u
0r

natural (rad/s)
frequency

sDigits in the parentheses ( ) are the ratios of u
Ir
/u

0r
(r"1}5), where u

0r
are the undamped natural frequencies

listed in Table 2 and the "nal row of the present table.
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TABLE 5

¹he dimensions and physical properties for the six-branched gear system as shown in
Figure 3(a)

Gears Shafts

Branches Mass moments Spring
No.t of inertia, Thickness Diameters No. constant, k

i
Diameter Length

j I
j
(lb in s2) ¹

j
(in) D

j
(in) i 107 (lb in/rad) d

i
(in) l

i
(in)

Propeller branch
1 48000)00 20)0 76)072 1 20)964 9)701 47)70
2 4000)00 5)0 57)802 2 47)393 9)701 21)10
3 1478)00 5)0 45)066 3 10)917 9)701 91)60
4 672)00 2)0 46)532 4 7)570 9)701 132)10
5 374)00 2)0 40)191 5 60)976 9)701 16)40
6 3040)00 1)0 80)7026

Generator branch
7 300)00 61)6780 16)1405 6 36)765 9)701 27)20
8 38)56 2)0 22)774 7 1)575 9)701 635)0
9 1408)00 5)0 44)522

Engine branch
10 300)00 61)6780 16)1405 8 58)140 9)701 17)20
11 272)80 2)0 37)143 9 175)439 9)701 5)70
12 16)40 2)0 18)392 10 1)600 9)701 625)00
13 108)40 2)0 29)490 11 107)527 9)701 9)30
14 1483)60 2)0 56)721 12 185)185 9)701 5)40
15 80)32 2)0 27)360 13 142)857 9)701 7)00
16 80)32 2)0 27)360 14 142)857 9)701 7)00
17 80)32 2)0 27)360 15 142)857 9)701 7)00
18 80)32 2)0 27)360 16 142)857 9)701 7)00
19 80)32 2)0 27)360 17 142)857 9)701 7)00
20 80)32 2)0 27)360 18 142)857 9)701 7)00
21 80)32 2)0 27)360 19 142)857 9)701 7)00
22 80)32 2)0 27)360 20 105)263 9)701 9)50
23 9)80 2)0 16)170 21 2)959 9)701 338)00
24 183)60 2)0 33)642

sGear ratios: R
j
"D(1)

6
/D(j)

6
"5)0 ( j"2}6) (see Figure 3(b)).

tThe numbering is based on the original gear-branched system (including the slave gears).

174 J.-S. WU AND C.-H. CHEN
7.3. FREE VIBRATION ANALYSIS OF A DAMPED THREE-BRANCHED SYSTEM

To show the utility of the present approach for the damped system, the three-branched
gear system as shown in Figure 2(a) equipped with three dampers is studied. Figure 5(a)
shows the mathematical model of the original gear system and Figure 5(b) shows the
equivalent direct-transmitted one. For convenience, the damping coe$cients of the three
dampers, C

j
( j"1}3), are assumed to be the same. The in#uence of damping on the lowest

"ve (elastic) natural frequencies with shaft mass considered, u
Ir

(r"1}5), of the
three-branched gear system (see Figure 5) is shown in Table 4 for the cases of C

j
( j"1}3)"8000}28 000 lb in s/rad. The real parts (u

Rr
) of the eigenvalues (a

r
, r"1}5)

denote the rth damping parameter, and the imaginary parts (u
Ir
) denote the corresponding

rth &&damped'' natural frequencies. For the convenience of comparison, the lowest "ve
&&undamped'' natural frequencies (with shaft mass considered), u

0r
(r"1}5), obtained from

Table 2 are also listed in the "nal row of Table 4.



TABLE 6

Several lowest natural frequencies for the six-branched gear system as shown in Figure 3 and the CP; time required

Natural frequencies u
r
(rad/s)

CPU
Methods u

0
u

1
u

2
u

3
u

4
u

5
Shaft mass time (t)

Present 0)000 26)4662 72)9823 72)9852 88)0565 98)7648 Considereds 9 s
0)000 26)8301 78)8936 78)8960 93)6692 103)5667 Neglectedt 9 s

(1.014)A (1)081) (1)081) (1)064) (1)049)

FEM [16] 0)000 26.8301 78)8965 78)8965 93)6667 103.5604 Neglectedt 35 s
(1)014)A (1)081) (1)081) (1)064) (1)049)

sMass of each shaft segment is &&considered''.
tMass of each shaft segment is &&neglected''.
ARatios evaluated fro the formula Rur

"u
r,N

/u
r,C

(r"1}5), where subscripts C and N denote that the mass of each shaft segment is &&considered'' and &&neglected'' respectively.
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Figure 6. Several lowest mode shapes for the six-branched gear system as shown in Figure 3: (a) 0th mode Mh1 *N
0
;

(b) 1st mode Mh1 *N
1
; (c) 2nd mode Mh1 *N

2
; (d) 3rd mode Mh1 *N

3
; and (e) 4th mode Mh1 *N

4
.
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TABLE 7

In-uence of shaft mass on the lowest ,ve natural frequencies for the three-branched gear
system as shown in Figure 2(a) with d

6
"4A"constant

Natural frequencies u
r
(rad/s)

Shaft dia.
d
i
(i"1}5) u

1
u

2
u

3
u

4
u

5
Shaft mass

15)2918 41)0561 210)3093 376)6550 828)2767 Considered
4A 15)2945 41)0961 212)5264 376)9178 828)3726 Neglected

(1)000)s (1)001) (1)011) (1)001) (1)000)

23)8905 64)0633 323)4693 587)9341 1293)9670 Considered
5A 23)8963 64)1923 331)7351 588)9336 1294)3320 Neglected

(1)000) (1)002) (1)026) (1)002) (1)000)

34)3949 92)0237 453)0417 845)0939 1788)8200 Considered
6A 34)4071 92)4027 476)7684 848)0631 1821)8510 Neglected

(1)000) (1)004) (1)052) (1)004) (1)019)

46)7985 124)7472 590)4014 1146)8770 1788)5120 Considered
7A 46)8238 125)6931 646)6537 1154)3040 1829)7270 Neglected

(1)001) (1)008) (1)095) (1)007) (1)023)

sRatios evaluated from the formula Rur
"u

r,N
/u

r,C
, r"1}5.

TABLE 8

In-uence of shaft mass on the lowest ,ve natural frequencies for the six-branched gear system
as shown in Figure 3(a)

Natural frequencies u
r
(rad/s)

Shaft dia.
d
i
(i"1!51) u

1
u

2
u

3
u

4
u

5
Shaft mass

10)2392 29)8149 29)8153 35)4914 39)3284 Considered
6A 10)2632 30)1791 30)1795 35)8292 39)6137 Neglected

(1)002)s (1)012) (1)012) (1)010) (1)007)

13)9109 40)1735 40)1747 47)9256 53)2056 Considered
7A 13)9699 41)0795 41)0000 48)7681 53)9187 Neglected

(1)004) (1)023) (1)021) (1)016) (1)013)

18)1191 51)6772 51)6791 61)8497 68)8571 Considered
8A 18)2454 53)6509 53)6514 63)6960 70)4244 Neglected

(1)007) (1)038) (1)038) (1)030) (1)023)

22)8492 64)0269 64)0295 76)9601 86)0147 Considered
9A 23)0923 67)9034 67)9045 80)6157 89)1308 Neglected

(1)011) (1)061) (1)061) (1)048) (1)036)

sRatios evaluated from the formula Rur
"u

r,N
/u

r,C
, r"1}5.
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The ratios of &&damped'' natural frequencies u
Ir

to the corresponding &&undamped'' ones
u

0r
are shown in the parentheses ( ) of Table 4. It is evident that most of the values of

u
1r

/u
0r

(r"1}5) are less than 1)0 with very few exceptions. This is a reasonable result since
the damping has the e!ect of reducing the natural frequencies of a vibration system. From
Table 4 one also sees that the in#uence of damping on the second natural frequency u

I2
is

much more predominant than that on the others (u
Ir

, r"1, 3, 4, 5). This phenomenon may
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have something to do with the relative positions of the three dampers [see Figure 5(a)] and
the second mode shape of the three-branched gear system (see Figure 4(c)).

7.4. INFLUENCE OF SHAFT MASS ON THE NATURAL FREQUENCIES

For a torsional system composed of two rigid disks (with mass moments of inertia I
i
and

I
j
, I

i
(I

j
) and a shaft segment (with spring constant k

p
), the in#uence of the shaft mass (or

shaft mass moment of inertia, I
p
) on the natural frequencies of the system is shown in

Figure 7, which is obtained on the basis of equation (44). The ordinate of the "gure denotes
the ratio of the natural frequency of the system with shaft mass &&neglected'', u

N
, to that with

shaft mass &&considered'', u
C
, i.e., Ru"u

N
/u

C
; while the abscissa denotes the ratio of mass

moment of inertia of the shaft segment, I
p
, to that of the smaller disk, I

i
, i.e., R

p@i
"I

p
/I

i
.

Each curve in Figure 7 denotes the relationship between Ru and R
p@i

for a speci"ed value of
R

j@i
"I

j
/I

i
, which is the ratio of the mass moment inertia of the larger disk, I

j
, to that of the

smaller disk, I
i
. From Figure 7 one sees that the value of Ru is related to both R

p@i
and R

j@i
.

However, the in#uence of R
p@i

on Ru is much greater than that of R
j@i

on Ru. For example,
for the solid curve (with R

j@i
"1)0), Figure 7 shows that Ru"1)0075 if R

p@i
"0)1 and

Ru"1)08 if R
p@i
"1)0; but even if for the case of R

p@i
"1)0 (i.e., I

p
"I

i
), Figure 7 shows that

Ru"1)08 if R
j@i
"1)0 and Ru"1)12 if R

j@i
"9)0. In other words, the ratio of mass moment

of inertia of the shaft segment, I
p
, to that of the disk, I

i
or I

j
, will be the key parameter

determining the in#uence of the shaft mass on the dynamic behavior of a torsional system.
Although the last statement is based on a 2-d.o.f. torsional system, it is also available for

the m.d.o.f. systems as shown in Figures 2(a) and 3(a). For example, if all the physical
quantities relating to the gears (or disks) and the length of each shaft segment as shown in
Figure 7. The in#uence of parameters R
p@i

and R
j@i

on the frequency ratio Ru"u
N
/u

C
:**, R

j@i
"I

j
/I

i
"1)0;

*}, R
j@i
"I

j
/I

i
"3)0; *n -, R

j@i
"I

j
/I

i
"5)0; }e }, R

j@i
"I

j
/I

i
"7)0; }w }, R

j@i
"I

j
/I

i
"9)0.
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Table 1 are kept unchanged, while the diameters of all the shaft segments are simultaneously
changed to 4A, 5A, 6A and 7A, respectively, except that d

6
"4A"constant, and the torsional

spring constant of each shaft element are recalculated by using equation (31), then the
in#uence of the shaft mass (or I

p
) on the natural frequencies of the three-branched gear

system is as shown in Table 7. Because most of the values of Rur
"u

r,N
/u

r,C
(r"1}5) are

near 1)0, i.e., u
r,N

+u
r,C

(r"1}5), the in#uence of the shaft mass on the natural frequencies
of the three-branched system is negligible. However, the last trend is not true for the
six-branched gear system shown in Figure 3(a), since most of the values of Rur

"u
r,N

/u
r,C

(r"1}5) are greater than 1)0, i.e., u
r,N

'u
r,C

(r"1}5), as one may see from the digits listed
in the parentheses ( ) of Table 8. The last table is obtained with all the physical quantities
relating to the gears (or disks) and the length of each shaft segment as shown in Table 5 are
kept unchanged, while the diameters of all the shaft segments are simultaneously changed to
6A, 7A, 8A and 9A, respectively, and the torsional spring constant of each shaft element is
recalculated by using equation (31).

The foregoing phenomenon for the three- and six-branched gear systems may be
explained with the help of Tables 9 and 10. For each shaft element, Table 9 lists the ratio of
mass moment of inertia of the larger gear to that of the smaller gear, R

j@i
"I

j
/I

i
, and the

ratio of mass moment of inertia of the shaft segment to that of the smaller gear, R
p@i
"I

p
/I

i
,

for the three-branched system, while Table 10 gives the similar ratios for the six-branched
system. Tables 9 and 10 are obtained on the assumption that the mass moment of inertia of
any gear connecting with two adjacent shaft segments is equally divided into two parts and
then each part connects with one shaft segment.

A comparison between Tables 9 and 10 shows that the values of R
p@i
"I

p
/I

i
for the

three-branched gear system are much smaller than the corresponding ones for the
six-branched system, hence the in#uence of shaft mass on three-branched system is
much smaller than that on the six-branched system. It is noted that the last result
is obtained based on the fact that the mass moments of inertia of the gears and the
shaft segment of the sixth shaft element is much smaller than those of the other shaft
elements for the three-branched system (see Figure 2(a) and Table 1), so that the e!ect of
the unusual large value of R

j@i
"I

j
/I

i
"226)667 for the sixth shaft element (see Table 9)

is neglected.

7.5. FORCED VIBRATION ANALYSIS OF A DAMPED SYSTEM

For the three-branched damped gear system as shown in Figure 5, if an exciting torque
F(t)"6000 sin(u

e
t) lb-in is applied to disk 1, then the relationship between the maximum
TABLE 9

Ratios of mass moments of inertia between gears and shaft for each shaft element as shown in
Figure 2(a) and ¹able 1

Numbering
of shaft 1 2 3 4 5 6
element

sR
j@i
"I

j
/I

i
9)854 5)583 1)718 2)0 83)333 226)667

tR
p@i
"I

p
/I

i
0)00586 0)08466 0)00128 0)000658 0)7592 0)1583

sR
j@i
"I

j
/I

i
"ratio of mass moment of inertia of larger gear to that of smaller gear for each shaft element.

tR
p@i
"I

p
/I

i
"ratio of mass moment of inertia of shaft to that of smaller gear for each shaft element.



TABLE 10

Ratios of mass moments of inertia between gears and shaft for each shaft element as shown in
Figure 3(a) and ¹able 5

Numbering 1 2 3 4 5 6 7 8
of shaft 22
element 50 51 36

R
j@i
"I

j
/I

i
s 24)000 2)706 2)199 1)797 16)257 15)560 73)029 2)199

R
p@i
"I

p
/I

i
t 0)0151 0)0181 0)3109 0)448 0)056 0)8955 20)9052 0)0800

Numbering 9 10 11 12 13}19 20 21
of shaft 23 24 25 26 27}33 34 35
elements 37 38 39 40 41}47 48 49

R
j@i
"I

j
/I

i
s 16)634 6)610 13)686 18)471 1)0 8)196 37)469

R
p@i
"I

p
/I

i
t 0)4412 48)379 0)1089 0)0854 0)1106 1)2306 43)783

sR
j@i
"I

j
/I

i
"ratio of mass moment of inertia of larger gear to that of smaller gear for each shaft element.

tR
p@i
"I

p
/I

i
"ratio of mass moment of inertia of shaft to that of smaller gear for each shaft element.

Figure 8. The frequency-response curve of disk 1 for the three-branched gear system as shown in Figure 5 due to
an exciting torque F(t)"6000 sin(u

e
t) lb-in on disk 1: }w }, C"1200 lb in s/rad; - - - - - - -, C"3600 lb in s/rad;

***, C"6000 lb in s/rad.
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torsional angle of disk 1, Dh
1
D
max

, and the exciting frequency u
e

(with time-step size
Dt"0)01 s) is shown in Figure 8, where (- - * - -) denotes the frequency-response curve for
the case of the damping coe$cients C

j
( j"1}3)"1200 lb in sec/rad, while (- - - - -) and

(**) denote those for the cases of the damping coe$cients C
j

( j"1}3)"3600 and
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6000 lb in sec/rad respectively. From Figure 8 one sees that there exists a peak for each
curve in the vicinity of u

e
+u

1
+23)0 rad/s, and the peak value of Dh

1
D
max

decreases with
increasing the damping coe$cients C

j
( j"1}3). It is evident that all the above results agree

with the theoretical predictions.

8. CONCLUSIONS

(1) A general formulation for the elemental property matrices (including mass matrix,
damping matrix, sti!ness matrix, and load vector) of a shaft element is presented.
According to this formulation, the only di!erence between the property matrices for
a shaft element connecting with the slave gear and those without connecting with the
slave gear is the value of the gear (or speed) ratio of the reduction gear R

j
: R

j
"r

m
/r

s
for the former and R

j
"!1)0 for the latter, where r

m
and r

s
, respectively, denote the

radii of the pitch circles for the master gear and the slave gear. Since no overall
transformation or element-by-element transformations are required, the presented
approach is easily used to do the free or forced vibration analysis of the complicated
gear-branched systems.

(2) For a torsional system composed of two rigid disks (with mass moments of inertia I
i

and I
j
, I

i
(I

j
) and a shaft segment with mass moment of inertia I

p
, if u

N
and u

C
are

the natural frequencies of the system with shaft mass (or I
p
) &&neglected'' and

&&considered'', respectively, then the value of Ru"u
N
/u

C
is related to both the ratios

of R
p@i
"I

p
/I

i
and R

j@i
"I

j
/I

i
. The in#uence of R

p@i
on the ratio Ru"u

N
/u

C
is much

larger than that of R
j@i

on Ru . In other words, the ratio of the mass moment of inertia
for the shaft segment to that for the smaller disk, R

p@i
"I

p
/I

i
, is the key parameter

determining the in#uence on the dynamic behavior of the torsional system. The
extension of the last statement is also available for the m.d.o.f. torsional system
composed of more than two rigid disks and one shaft segment.
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